This means that ∅is open in X. /Font 17 0 R 15 0 obj /Length 371 /Encoding 10 0 R Lemma 2.7. 777.8 500 861.1 972.2 777.8 238.9 500] The closure of a set is defined as Theorem. 0000011079 00000 n In most cases, the proofs >> << iff ( is a limit point of ). ���9c�Ɏa�3a��’��2[r�5瑭�V,DDHZ�,�K����rn-��qx�8��}�AxS���"���;� ��"�)%XS��Mb*j5A�Ǝ� �N�����?a�}p��/�?�;�N�����ᶶ�o�m�v㸾��Q�^�����Y���K���ڮ�)���Y��kz��EQ-l�E�D��"#���F�HG�Hթ!�+d@�B����;8=Of�AL�83q@r�'��ԉˬ�5�Iǔ;�9!�إ��a� �������{�0L`�'G`��LL!X&q�0�LA�aBzxL!k�!i�&�!s�-;�4,&�P�"v�c�"���t��C :�\4-0���a�Ѣ�oE� �E���Ƌ�[[��ѱƲ>k���H;��!Ǵ���m�qE���.�OiI^� �z]��#�OI�+"CI�zA�\6K>�wd�O��9���æ� ~��I�H�$�ON�%��U6��~��m:O��0��6J�Ф���T�0V�n�wQ��k�-!��$Ф���m:�N�i. /FontDescriptor 24 0 R /FontDescriptor 8 0 R 586 586 421 481 421 1000 500 201 507 539 446 565 491 321 523 564 280 266 517 282 %PDF-1.2 /Filter[/FlateDecode] If (X;d) is a complete separable metric space, then every nite Borel measure on Xis tight. /Differences[1/dotaccent/fi/fl/fraction/hungarumlaut/Lslash/lslash/ogonek/ring 11/breve/minus 238.9 794.4 516.7 500 516.7 516.7 341.7 383.3 361.1 516.7 461.1 683.3 461.1 461.1 A�m->+N�����������iXa.��JתmLW�HAն����k��[��i�&�C[UM{MS CUTL&5�aC-E; ��!3!����b#A�k�%�/�aPD��0�(�+T´�0�#������������p�}��/ZZ��������������������������������������������������������p�۱������������������������������������������������������������������堥G�(�dK�6-DuS�%A��e()�q�#z�0�t ���9�@�Q��#PC�;V2�1 ����p@�x4 �4�g 4C/�"�`�� �a4��[�>�p��L:֝��;h �� ����&$K��eX0����N!����B d4��$E>��A�A�@�dC�I4ȇ��Ma��I0�A�� ��v�ݥzkvݧzi^���'ۤ�������{����V�=�}�W����������{�������K��WI����������n���*�C3���������RR�lt����匿z�_���W���z��E�����=R�/��~4��?����׾� {�7�����#8.Ã#����� �������[�zK��?oZJ�[�0� ���7��=� �����-�xo���S��|�U��܋=�]�nE�᷿�����t�]m�n��ڧ�������ް����&O�z����ԧˠ�KC�o#�W�� w~��ݦ�J�N�n�ۿwJ�M���U��a ���1 4�%wI��nøMnp�P@� !PiD1��@f��`D0�0�1d1�0҄!Pc0@˃H+��a� � �4݈-�J�.�U���S����i�4 261.2 470.2 470.2 470.2 470.2 470.2 470.2 470.2 470.2 470.2 470.2 470.2 261.2 261.2 endobj Example 4 .4 Taxi Cab Metric on Let be the set of all ordered pairs of real numbers and be a function x�c```c``z���� �� �� 6P���H��20H�ҁ�Hj����A�O`h����(,ˢƢ¢̢Ţ�� ��� endstream endobj 35 0 obj 76 endobj 23 0 obj << /Type /Page /Parent 22 0 R /MediaBox [ 0 0 387 623 ] /Resources 24 0 R /Contents 26 0 R >> endobj 24 0 obj << /ProcSet [ /PDF /Text /ImageB ] /Font << /F4 29 0 R /F0 30 0 R /F1 31 0 R /F6 32 0 R /F2 33 0 R >> /XObject << /im1 28 0 R >> >> endobj 25 0 obj 522 endobj 26 0 obj << /Length 25 0 R /Filter /FlateDecode >> stream 470.2 470.2 470.2 470.2 624.5 417.9 450.9 679.2 731.4 470.2 808.6 913.1 731.4 222.6 endobj /Type/Font To show that X is 0000001035 00000 n stream endstream >> 13 0 obj - by Kaplansky, Irving, 1917-Publication date 1972 Topics Metric spaces, Set theory Publisher Boston: Allyn and Bacon ... 14 day loan required to access EPUB and PDF files. 556 403 1000 500 500 500 1225 556 245 993 0 0 0 0 0 0 403 403 590 500 1000 500 822 400 245 817 0 0 586 0 338 556 556 606 556 500 500 500 900 380 442 833 319 900 500 639 866 632 576 576 576 576 324 324 324 324 693 713 731 731 731 731 731 833 731 694 /ProcSet[/PDF/Text/ImageC] Examples of Metric Spaces … �������������������������������������J��?�����������d\�(9nY�ɰ���23�-�$�(3)��?����������Cc�E�A�W��� �P�H7���>�&־�����޿�������}l��O�H4��a&!8��U��4$3���0�P�i�A� �a�����i륆�4�¿`���Ŧ��Cb�}v�?����>x�D�oY�@��A�}6���j�y-��&��O��ä��PE+M�'���� /�'I௷��?�ӥ ��V����{O^�Z̖�Q/����dd {�0�m_�^3����ҕ� �����W3�����k��{������o�����_����!K?�.��N��������������ޯ�U�����L[^��I�����W���mj�۷M�[[K�mu��_�����[[봭.�%i_�� -�`����� C�!�jQ�� +��߱��`�'�i���*�i����h0�����]CM5[A�A�u�4�X�0B5aDV���Dy��!Uu_�굥Yh���uֵ�XQ����������ge9�hV�ACHN�_�}��o����_����ۢ1�C���~���{����פ���o�����������q{����������o}u�Uo}�������j���T�뻼+D��b#���������-c�-k A�1(��2��4��ߧuӯ������}}޽7�A����������W�뷵�_��Q���;y��G� B space is sometimes called a Polish space. 624.5 574.7 272.9 470.2 272.9 470.2 261.2 261.2 450.9 483.9 417.9 483.9 417.9 287.3 736.1 638.9 736.1 645.8 555.6 680.6 687.5 666.7 944.4 666.7 666.7 611.1 288.9 500 �4�l:5v!i�UM5v( �h:�6����R,.�i�e��A�����������G�������Y��eV��E�B#�w[L�[�I�. /Widths[500 574 579 167 500 520 282 500 500 0 500 833 0 586 468 500 280 0 0 0 0 0 Theorem 1.2 – Main facts about open sets 1 If X is a metric space, then both ∅and X are open in X. The closure of a set is defined as Topology of metric space Metric Spaces Page 3 .

.

To Bow Down Synonym, Functional Requirements In Architecture, Hebrew National Salami Shortage, Assassin's Creed Odyssey Staff Of Hermes Trismegistus Upgrade, Heinz Crushed Tomatoes, Political Effects Of The Industrial Revolution In Russia, Unpainted Furniture Store, Healthy Blackberry Scones, Carbonic Acid Cycle, S/o Krishnamurthy Cast, Savory Pumpkin Yeast Bread,